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ABSTRACT

Recently, we analyzed a relation, found for chaotic orbits, between the Lyapunov time T, (the

inverse of the maximum Lyapunov exponent) and the "event" time Te (the time a which an orbit

becomes clearly unstable). In this paper we treat two new problems. First, we apply this T,-Te
relation to numerica integrations of 25 outer-belt asteroids and show that, when viewed in the

proper context of a Gaussian distribution of event time residuals, none of the 25 objects exhibits
an anomaloudy short Lyapunov time. The current age of the solar system is approximately three
standard deviations or less from the anticipated event times of all of these asteroids. We argue
that the Lyapunov times of the 25 remaining bodies are each consistent with the age of the solar
system, and that we are therefore seeing the remnants of a larger origina distribution. The bulk
of that population has been gected by Jupiter, leaving the "tail members' as present-day survi -
vors. This interpretation is consistent with current understanding of the behavior of trgjectories
near KAM tori in Hamiltonian systems. In particular, there is no need to invoke a new type of
motion or class of dynamica objects to explain the short Lyapunov timescales found for solar sys-
tem objects.

Second, we discuss integrations of 440 fictitious outer-belt asteroids and show that the slope

and offset parameters of the T.-Te relation do not change with an increase in Jupiter's mass by a

factor of 10, and that the distribution of residualsin log Teis Gaussian. This allows usto sensibly
and quantitatively interpret the significance of the Lyapunov timescae. However, the width of

the residuals distribution is a function of mass ratio. Since knowledge of the distribution width is
needed in order to interpret the significance of predicted event times, a caibration must be per -
formed at the mass ratio of interest.
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[. INTRODUCTION

Strikingly large values of the maximum
Lyapunov exponent are associated with cha-
otic motion in the solar system (e.g. Sussman
and Wisdom 1988, 1992; Laskar 1989; Torbett
1989; Mikkola and Innanen 1992). In this
paper, we continue our efforts to interpret the
Lyapunov time, T =1/g, in the solar system in
light of a relation between T, and the "event"
time T. (Soper et a. 1990; Lecar et a. 19924,
Lecar et a. 1992b, henceforth [[EM; Levison
and Duncan 1992; Holmanand Wisdom 1993):

Iog% =a+b Iog% (1)
where T, is an appropriate normalizing period.
The event time is the timescale on which the
gualitative character of the motion changes.
Events are indicated by, for example, a close
approach to a planet, the crossing of a plane-
tary orbit, or the escape of a satellite — in gen-
eral, an gection or a collison. We use the
notation Te, rather than T, the planetary orbit
crossing time (Lecar et al., 19924d), to reflect
this more generalized meaning of an event. For
this study, To=T;, the orbital period of Jupiter.
Notice that, unlike the slope b, the value of the
offset parameter a scales with To. For orbits
interior to Jupiter, we find in this paper that
a=130 £ 0.03 and b=1.74 + 0.03, in good
agreement with the preliminary results of LFM.
The T.-Te relation is the only known method
for prediction of the long-term instability
timescaleof solar-system bodies.

Here we focus our attention primarily on
two issues. First, we have calculated T, for al
25 known outer-belt asteroids not associated
with a mgjor resonance (3.43 < a< 3.76 AU).

Just beyond the upper limit of the range consid-
ered here are the Hilda group asteroids. See
Franklin et a. (1993) for further discussion and
an application of the T,-T. relation to these
interesting objects. The Lyapunov times of the
25 orbits considered here range from 3200 yr
to greater than 96,000 yr. We interpret these
values in terms of the T.-T. relation and argue
that the few remaining bodies with short T, are
the expected remnants of an initialy much
larger population. An aternative view (Milani
and Nobili, 1992), that existing bodies with
short T, are members of a curious class of
objects described by the mideading label "sta-
ble chaos," seems unlikely. The existence of
this purported class was inferred on the basis of
numerica integrations of a single body, (522)
Helga, and is, we claim, a misinterpretation of
the significance of the observed T.. Our inter-
pretation is in fact consstent with well-
established behavior of trgectories near
invariant surfaces ofHamiltoniansystems.

The T.-T. relation suffers from being
poorly established for times greater than 10°’
Jovian periods. Levison and Duncan (1992)
have completed some integrations for up to 4
Gyr in the region of the proposed Kuiper belt,
and their results appear to follow the T.-Te
relation. (They also report, for integrations
between Jupiter and Saturn and between Ura-
nus and Neptune, approximate values of a »
1.4, b » 1.9, in good agreement with our val -
ues.) However, encouraging as these results
are, there is dill an insufficient number of T, >
10° T, orbits calculated to date. Since the
needed long-term integrations are difficult to
obtain, we aso investigate here the conse-

page 2



guences of increasing Jupiter's mass to speed
up perturbation effects.

. METHOD

The dynamica system utilized for this study
is the three-dimensiona elliptic restricted three-
body (ERTB) problem, with Jupiter as the sec-
ondary mass m,. We integrated the equations
of motion in the rotating-pulsating frame (cf.
Szebehely 1967, Szebehely and Giacaglia 1964)
with a Bulirsch-Stoer extrapolation method
(e.g. Stoer and Bulirsch 1980, Press et a.
1992). See Murison (1989) for details on the
numerical performance of the integrator. The
(constant) eccentricity used for Jupiter in all
cases was €=0.04848. This model is conven-
ient because of its smplicity. The ERTB prob-
lem is the smplest dynamical model which is
still complex enough to exhibit all the important
behavior required for this study. Comparisons
with a model that includes the effects of Saturn
on the motion of Jupiter (cf. Lecar and Frank-
lin, 1973) yielded no significant differences that
would affect our results in the region of the
asteroid belt considered here. In particular, an
integration of (2311) El Leoncito yielded a T,
of 460 T,, fully consistent with our value of 422
T, Relying on areasonable and smple statisti -
ca interpretation, as well as indications from
recent nonlinear dynamics literature, we conjec-
ture that the property of certain orbits to
exhibit long-term "stability" despite short
Lyapunov timesisin fact to be expected, as we
argue in the next section.

Along with each orbit, a second "test" orbit
was integrated. This second orbit started a dis-
tance 10° in phase space from the reference
orbit and was used for calculating the

Lyapunov exponent. Renormalization of the
test orbit with respect to the reference orbit
occurred whenever the phase space distance
exceeded 10% thus avoiding saturation prob-
lems. See e.g. Benettin et a. (1976) and Wolf
et al. (1985) for details on calculating Lyapu-
nov exponents.

We obtained orbital elements for the 25
known outer-belt asteroids not associated with
a low-order resonance from the Minor Planet
Center for the epoch JD 2448601.0 = 10 Dec.
1991. The orientation elements were trans-
formed to Jupiter's orbital plane, in order to
determine the correct ERTB initia conditions.
The original and transformed elements are
shown in[Table]. Elements for Jupiter were
taken from Danby (1988).

We performed numerical integrations for
each of the 25 asteroids. Predicted event times
were determined by application of the T.-Te
relation, eg. (1), to the calculated Lyapunov
exponent. The length of these integrations was
10° Jovian years (~1.2 Myr) — sufficient to
determine whether or not the predicted event
time is within several standard deviations of the
age of the solar system, Tss. Longer integra-
tions, though certainly possible, are in fact
unnecessary, since the shortest Lyapunov times
(those most likely to be in serious disagreement
with the age of the solar system) are accurately
calculated.

In order to investigate the T.-T. relation for
a high mass ratio, we integrated 440 fictitious
outer-belt orbits over a wide range of initia
semimgor axis with m,=10 M, The initia
eccentricity of these orbits was 0.05, the longi -
tude of pericenter 320 deg, inclination 3 deg,
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Tablel. Initial orbital elements of the 25 outer-belt asteroids with respect to the equator and
equinox of 2000.0 and at epoch JD 2448601.0 = 10 Dec. 1991. Primed elements are with
respect to theJovian orbital plane.
Asteroid M i W W e aa I W W

1144 Oda 297 9.65 157.64 222.17 0.08 0.72 9.01 150.36 215.15
2311 El Leoncito  218.11 6.63 157.45 181.53 0.05 0.70 6.02 153.67 171.04
522 Helga 355.81 4.45 11752 249.06 0.08 0.70 3.23 110.14 242.22
2932 Kempchinsky 234.52 2.24 169.84 187.71 0.11 0.69 2.16 190.03 153.29
2697 Albina 82.78 359 273.26 121.67 0.09 0.68 4.89 260.95 119.77
721 Tabora 32898 8.34 39.39 359.22 0.12 0.68 7.79 16.83 7.66
3092 Herodotus 238.78 10.88 9.37 0.11 0.11 0.68 10.98 348.43 6.97
1990WK 113.58 10.37 7393 254.27 0.10 0.68 9.22 56.16 257.9
1574 Meyer 186.5 144 246.93 259.35 0.05 0.68 15.5 235.33 256.66
909 Ulla 85.56 18.84 147.28 230.13 0.10 0.68 17.97 136.01 227.04
3095 Omarkhayyam 215.01 2.98 293.81 119.46 0.06 0.67 4.26 275.54 123.54
414 Liriope 257.68 9.58 111.46 329.74 0.08 0.67 8.30 98.97 328.01
536 Merapi 1955 1944 59.78 304.97 0.09 0.67 18.47 43.04 307.65
2208 Pushkin 351.61 542 79.71 346.15 0.05 0.67 4.23 59.27 352.41
87 Sylvia 10.11 10.87 73.75 27295 0.08 0.67 9.72 56.14 276.41
1328 Devota 4247 578 22404 169.27 0.15 0.67 6.59 219.28 159.77
107 Camilla 260.39 9.92 174.15 296.52 0.08 0.67 9.64 167.34 289.02
260 Huberta 169.49 6.42 165.97 173.45 0.12 0.66 6.00 163.14 162.02
121 Hermione 126.25 7.54 7459 289.17 0.14 0.66 6.39 55.32 294.27
4236 23.95 7.32 349.32 162.48 0.03 0.66 7.88 326.29 171.39
2634 James Bradley 211.55 6.44 134.48 340.07 0.07 0.66 5.41 128.01 332.29
2196 Ellicott 28.19 10.28 212.59 319.15 0.06 0.66 10.84 204.71 312.72
1390 Abastumani  277.93 19.98 2954 191 0.03 0.66 19.59 11.88 5.59
2702 181.74 159 247.02 311.08 0.08 0.66 2.77 247.8 296.09
65 Cybele 14444 354 156.05 109.27 0.1 066 3 162.82 88.26
Jupiter: M =135.417073, i = 1.303713, W= 100.382152, w = 273.819181, e = 0.04848169,
a=5.21021558, n = 137.300833

true anomaly 40 deg, and the semimgor axis rsnm > 1.1 & (5.73 AU) for more than one
ranged from 0.659 to 0.750 a;,. Adde from the Jovian year. The larger mass ratio alowed per-
semimgjor axes, these particular values were turbations to develop faster and therefore
arbitrarily chosen. The eccentricity of the pri- quicker acquisition of results.

marieswas e, = e, The maximum length of the

integrations was 10° Jovian years (~12 Myr),

and an event was presumed to have occurred if
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. RESULTS

Outer-Belt Asteroids and Long-Term
Chaotic Motion

We present our results for the 25 outer-belt
asteroid integrations in[Ia0[eTl. Times are in
units of Jupiter periods T; (11.86 yr). The
Lyapunov time T, is shown in column 3, while
the predicted escape time Te, in units of 10° T,
isin column 4. T. was calculated from
usng b=1.74 and a=1.30. These vaues were
determined from the semimgor axis survey
results of this study, presented below. They
agree with the values found in LFM for aster-
oid orbits interior to Jupiter. The 25 orbits fall
into three categories, as denoted in column 5.
An "A" dgnifies a clearly chaotic orbit, where

. A - 2311 El Leoncito
B - 1144 Oda
C- 3095 Omarkhayyam |

Lyapunov Exponent

10' 2 5 10° 2 5 10° 2 s 10 2 5 107 2

T

Figure 1. Typica behavior of the Lyapunov exponent g
as afunction of time (in Jovian periods), illustrating three
types. The curve labeled A is strongly chaotic; an
approximate value for g is quickly found. Curve B is
"possibly-chaotic,” and further integration is required to
determine the asymptotic value of g Curve C represents a
typical quasiperiodic (or at best very weakly chaotic) orbit.

the Lyapunov exponent as a function of time
appears to have leveled off to a nonzero value.
A typica plot of gin such a case is shown in
Figured, curve A. A "B" in column 5 signifies
a probable chaotic orbit, where g appears to be
leveling off but the integration was not long
enough to determine avalue. The valuesof T,
calculated for these orbits are therefore lower
limits. A typica plot for this case is shown in
Figure 1, curve B. A "C" in column 5 means
that the orbit was quasiperiodic (or very weakly
chaotic at best), where the Lyapunov exponent
is asymptotically zero (or nearly zero). Curve
C of Figure 1 shows gvs. t for atypical orbit of
thistype. The actua T, for these orbitsis very
large. We could have performed longer inte-
grations and, possibly, thereby removed some
of the > signs from columns containing T, and
Te — i.e., converted class C into class B, or
class B into class A. This would be a noble
deed, but not an especidly valuable use of time
because our rea interest and concern centers
on just those minor planets with short Lyapu-
nov times.

An important characterization of the T,-T.
relation is the width of the distribution of
orbits about the best fit to feq. (1) It may be
used to interpret the significance of a given
value of T, and therefore relate it to physical
systems. In data obtained from LFM, we found
that the distribution of residuals in log T. for
the Jupiter-Sun system and asteroid orbits
inside Jupiter's orbit was consistent with a
Gaussian shape with standard deviation s =
0.98. Thus, for a given population of objects,
some nonzero percentage would be expected
to lie in the tail of the distribution. Take for
example the asteroid in Table Il with the
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Tablell. Results of 25 outer-belt asteroidntegrations. Timesarein
Jovianorbital periods. See text for the meaning ofs. Final column lists
the most significant resonance encompassed by the observed rangein
semimajor axis (see text).
Asteroid T Te(10°) S resonance
1144 Oda >2100 >12.75 B <150 13:8
2311 El Leoncito 422 075 A 276 12:7
522 Helga >2915 >21.74 B <1.27 12:7
2932  Kempchinsky ~ >1900 >9.86 B <162 127
2697 Albina >2500 >16.07 B <140 16:9
721 Tabora 2,299 1437 A 145 16:9
3092 Herodotus 2,421 1573 A 141 16:9
1990w 2,564 1738 A 137 16:9
1574 Meyer 3,717 3322 A 108 16:9
909 Ulla >2600 >17.31 B <1.37 16:9
3095  Omarkhayyam  >4900 >5429 C <0.86 20:11
414 Liriope >3000 >23.02 C <124 20:11
536 M erapi 2,801 20.28 A 13 20:11
2208 Pushkin >4400 >45.03 B <094 20:11
87 Sylvia >8100 >128.27 C <048 20:11
1328 Devota 287 038 A 3.06 20:11
107 Camilla 3,145 2482 A 121 11:6
260 Huberta 270 034 A 3.1 13:7
121 Hermione 3,571 3098 A 111 13:7
4236 2,841 2079 A 1.29 13:7
2634 James Bradley >3700 >33.02 B <1.08 13:7
2196 Ellicott >3200 >2595 B <119 15:8
1390 Abastumani >5000 >54.75 C <0.86 il
2702 2,463 16.21 A 14 15:8
65 Cybele 299 041 A 3.03 15:8
shortest Lyapunov time, (260) Hubertg with that (260) Huberta belongs to the tail of a

T.=270 T; and Te=323,000 T,. The age of the
solar system, Tss = 3.78x108 T, = 4.5 Gyr, cor-
respondsto aresidual of log Tss- log T. = 3.07
= 3.13 s. We clam that this apparently small
value of T, and the corresponding T, isnot in
significant conflict with objects still being pre-
sent after atime of order Tss. One could argue

population distributed around the mean defined
by eg. (1). Knowledge of thus prevents a seri -
ous misinterpretation of T.

Our valuesfor s are lower limits; the longer
the asteroids remain in their present orbits, the
more significant will be their deviation from the
mean relation eg. (1). If our interpretation is
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correct, we would expect that an original popu-
lation of asteroids would be largely depleted by
now, leaving a few members in the large-T. tail
as present-day survivors. We have thus quanti -
tatively determined the short-T, boundary for
this type of object. If this boundary were
inconsistent with the age of the solar system,
we would be faced with a quandary. However,
we argue that thisis not the case.

Recently, Milani and Nobili (1992) reported
an integration of just one outer-belt asteroid,
(522) Helga. They found a Lyapunov time of
roughly T,=580 T, (6900 yr). Unaware of the

4
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Figure 2. Variation of T, with initial semimajor axis for
(522) Helga (top panel). Successive panels show the varia-
tion of the semimajor axis, orbital eccentricity, and orbital

inclination, averaged over the integration time of 18 T..

actual sgnificance of this value, they claimed
discovery of (522) Helga as the first known
example of a new class of dynamicd behavior
for which they contrived the mideading and ill-
considered label "stable chaos." They go on to
clam that T, in this case must therefore be
"meaningless.” However, using our initial con-
ditions we find T,>2915 T, corresponding to
only 1.3 s from Tss for Te. With dight changes
in the initial conditions (cf. [Figure 9), we were
able to drop (522) Helga into the 12:7 reso-
nance with Jupiter, finding an average value in
the resonance of T,=490 T, which is even
smaller than, but comparable to, Milani and
Nobili's value and  corresponds to
Te»950,000 T,. (The similarity of our value for
T., obtained with the ERTB equations of
motion, and Milani and Nobili's value, resulting
from integration of al the planets, lends further
support for our use of the smpler ERTB prob-
lem.) Yet even this value of Teisonly 27 s
from Tss. Thus we find it difficult to believe
that the longevity of (522) Helga despite an
apparently short T, is evidence of a new class
of objects or anew physical concept. Rather, it
ismore likely that Helgais atail member of the
distribution of residuas in T. about the mean
T.-Te relation eg. (1). Indeed, we conjecture
that (522) Helga is not stable, and that it will
eventually suffer a catastrophic change in its
orbit (cf. Wisdom, 1983, figs. 1 and 4). We
argue this point in more detail below.

The next to last column of Table Il shows
the number of standard deviations that the age
of the solar system lies from the expected value
for T, as caculated from T, and the T.-T. rela
tion. Of the clearly-chaotic orbits, for which
we can caculate a reliable T, three asteroids
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are close to three standard deviations (asteroids
[L328, 260, and 69), oneis at 2.8 s, and the rest
lie well within 2 s. This distribution is consis-
tent with the notion that in the outer-belt aster -
oids we are seeing the remnants of a larger
original distribution. The bulk of that popula-
tion has been cleared out by Jupiter, leaving the
long-T. tail members to survive to the present.

The observed value of g fluctuates with
smal changes of the initid conditions. For
example, shows the Lyapunov times-
cae as a function of initial semimgor axis for
(522) Helga. The value of T, is greater than
32,000 yr (corresponding to T. ~ 22 Myr),
except in a narrow interval around the 12:7
resonance, al [0.69770, 0.69815], where T,
averages about 5800 yr (Te ~ 0.95 Myr). The
open triangles denote a lower limit, since the
Lyapunov exponent in these cases did not level
off to a definite value by the end of the integra-
tion (cf. curves A and B of Figure ). Also
shown in Eigure 2 are the corresponding mean
values of semimgjor axis, eccentricity, and incli-
nation, averaged over the length of the integra-
tions (100,000 T;). The 12:7 mean motion
resonance is at a=0.697922 &, marked by the
symbol in the second panel of Figure 2. We
noted variations in T, of roughly 12 percent
within the resonance. The chaos exhibited by
the motion of (522) Helga is apparently associ-
ated with the 12:7 resonance, and the semima-
jor axis width of this resonance is clearly
delineated by the behavior of T., the mean
eccentricity, and the mean inclination. The last
column in shows the nearest mean
motion resonance encompassed by the given
orbit over the length of the 10° T, integrations.
Those with short Lyapunov times are, like

(522) Helga, possibly associated with the cor-
responding resonance for the particular initid
conditions we used. The range in semimgor
axis for (522) Helga was more than a factor of
7 larger than the width of the resonance as evi -
denced in Asteroid (1390) Abastu-
mani, faling between 15:8 and 13:7, was the
only one whose semimgor axis did not at any
time in our numerical integration cross a reso-
nance. (This asteroid exhibited behavior con-
sistent with quasiperiodic motion, cf. [[20[ETI)
We are not certain to what extent, if any, the
asteroids are affected by the corresponding
resonances, but the association is suggestive
(see below).

An Interpretation of Short Lyapunov
Times

We propose the following picture for the
dynamics leading to an "event" First we
review briefly the relevant dynamics of a two
degree of freedom system, then we conjecture
that analogous behavior is occurring in the
much more complicated, many degree of free-
dom, Hamiltonian system represented by the
outer-belt asteroids.

It is well-known that, in a two degree of
freedom Hamiltonian system, invariant surfaces
(KAM tori) divide the phase space. Under the
influence of a sufficiently strong perturbation,
the "outermost” invariant surfaces are
destroyed, giving rise to a global sea of chaos
surrounding an inner stable region, where
invariant surfaces still exist. At the core of the
stable region is a stable period one orbit. Fur-
ther out, past the outermost intact surface and
embedded in the chaotic sea, are secondary
invariant surfaces surrounding eliptic period n
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orbits. Each of these period n idands has asso-
ciated with it asimilar hierarchy of higher-order
island chains, and so on.

Consider an outermost intact invariant sur-
face. A sufficient increase in the magnitude of
the perturbations will produce atear in this sur-
face. Under dynamical evolution of the sur-
face, this tear will propagate and reproduce
over the surface, producing a fractal distribu-
tion (Cantor set) of holes or gaps, known as a
cantorus (Percival, 1979; MacKay et al., 1984).
The surface is not completely destroyed, but
neither is it any longer impervious to diffusion
of orbits acrossit. There is a countable infinity
of holes. The stronger the perturbation(s), the
more "porous’ is the cantorus. Thus, it is pos-
sible for an orbit to be trapped in a region of
phase space, enclosed by a cantorus of smal
porosity, for some time before encountering a
"hole" and escaping into a more unstable
region. Some orbits may escape quickly; oth-
erswill be trapped for sometime. Given anini-
tial population of such orbits, one would expect
a digtribution of escape times — perhaps Gaus-
sian. The same argument can be used for orbits
near the secondary idands, which themselves
will be enclosed by cantori (and higher-order
islands, etc.).

Anaytic caculation of diffuson rates
across hierarchies of cantori is very difficult.
As a trgectory passes through a cantorus, it
may be deralled to "shadow" a higher-order
idand chain, which itself has a grid of cantori
gaps, and so on. Numericdly, it can be shown
that the distribution of orbits initially in the
neighborhood of an idand remaining in that

neighborhood (i.e., the "survival" probability) is

Pt) ~tF )

for long times t (normalized by the orbit
period), where b » 1.4 for a small, isolated
idand (Chirikov and Shepelyansky, 1984b;
Karney, 1983; Lichtenberg and Lieberman,
1992). For the main isand of the standard
map (Chirikov, 1979), b » 1.45 (Chirikov and
Shepelyansky, 1984a; Murray, 1991). It
would be reasonable to wonder if the tori sur-
rounding regular islands is the main barrier to
diffusion of atrgectory outward. However, it
appears that the sticking time to a given sur-
face is the dominant process in impeding phase
gpace transport (Chirikov and Shepeyansky,
1984ab; Murray, 1991). The departures of
diffuson from unimpeded random motion are
due to a small percentage of orbits that are
stuck around KAM surfaces bounding aregion
of chaotic motion.

We may associate an escape past a particu-
lar cantorus with an "event" in an asteroid
orbit, since (going back to the two degree of
freedom analogy) successive cantori are rapidly
more porous, leading quickly to the globa sea
of chaos and therefore wild excursions of the
orbit. We propose that thisis a reasonable pos-
shility for the mechanism displayed by the
outer-belt asteroids. The foregoing has been
well-established for simpler Hamiltonian sys-
tems (cf. Lichtenberg and Lieberman, 1992
Wiggins, 1990).

An dternative view is that KAM tori are
"dsticky." Karney (1983) was the first to
numericaly study the stickiness of KAM tori,
finding that long-time correlation functions for
a verson of the standard mapping are strongly
governed by the dynamics near KAM surfaces.
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It has often been observed that orbits near an
invariant surface become "trapped" into almost
regular orbits for long (but finite) times (Perry
and Wiggins, 1994; Kaneko and Konishi, 1994,
also Wisdom, 1983). Jensen (1984, a review)
and Lai et al. (1992, recent work) apply this to
the surviving fraction of un-ionized atoms in a
model of the ionization of surface-state elec-
trons in an oscillating electromagnetic field.
Such "stickiness' will have a profound effect on
the statistical properties of a system, including
diffusion rates or escape rates. A population of
trgjectories will contain some members lying
closer than othersto a KAM surface, leading to
a distribution of escape times, some of which
will be long.

Perry and Wiggins (1994) show that the
surviva probability for an N-degree of freedom

6F ~0 1
B o o |
oMo o.”
5l : _E!an o
a . [ 0
g go®
4t o
I3
) A
23

a0

05 00 05 10 15 20 25 30
log T

Figure 3. Log of observed event time, Te, vs. the log of
the Lyapunov time, T, for the 440 survey orbits calcu-
lated with m,=10 M;. The solid line is an unweighted
least squares fit, with slope b=1.74 + 0.03 and intercept
a=1.30 = 0.03. Dotted lines mark the 2s¢ boundaries of a

Gaussian fit to the residuals.

Hamiltonian depends strongly on the dynamics
near the KAM tori. Solutions beginning there
simply take a long time to move away, despite
the fact that the motion is chaotic. They rigor -
oudly derive a lower bound on the time it takes
to move away from atorus:

T> %e(Kﬁ’r)a 3)

where T is the lower bound on the time it takes
to double the distance from the surface, r is the
distance from the surface, C and K are positive
constants that depend on the analytic properties
of the Hamiltonian, b > O is a measure of the
irrationality of the flow, a = 1/(N+2), and N is
the number of degrees of freedom. The more
irrational the flow (i.e., the higher the reso-
nance order), the more "sticky" is the surface.
Lower bounds like this were first obtained by
Nekhoroshev (1977) for a class of near-
integrable Hamiltonian systems and are there-
fore known as Nekhoroshev type bounds.
They were worked out for the time to move
away from dliptic equilibrium points by Gior-
gilli (1988) andGiorgilliet al. (1989).

The extension to the outer-belt asteroids
follows naturally, and we do not therefore
require the existence of some mysterious, new
class of objects or type of motion in order to
explain the observed behavior. It is, in fact,
quite consistent with the above-mentioned pre-
vious studies. The association with KAM tori
aso explains our observation that the outer
asteroid orbits considered here al lie near a
high-order resonance with Jupiter, the main
perturber.
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Figure 4. Histogram of the difference of log T. (ob-
served event time) from the linear fit to the semimajor
axis survey data (solid line) of Figure 3. Smooth curve

is the best-fit Gaussian, with s¢=0.39.

Semimajor Axis Survey and Residuals
Distribution

The results of a semimgor axis survey with
m, = 10 M, are displayed in The solid
line is the unweighted least squares fit to 440
orbits, with slope b=1.74 + 0.03 and intercept
a=1.30 = 0.03 (all quoted errorsare 1 s formal
uncertainties). The standard deviation of the
resdualsiss = 0.41. Agreement with the LFM
values for orbits interior to Jupiter (b=1.73 *
0.19, a=1.53 * 0.34) is well within the formal
uncertainties. This agreement illustrates the
apparent robustness of the relation. It appears
that a and b are insengitive to the mass ratio for
thisdynamicalconfiguration.

The distribution of the data pointsin log Te
from the least squares fit (i.e., the residuals) is
approximately Gaussian. is a histo-
gram of the distance in log T. from the solid
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o
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[

-0.04

T 5 2 1 0 1 2 3 4 s
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Figure 5. Difference between observed and expected

fraction of data points falling into histogram bins of

Figure 4, for a Gaussian distribution. Error bars are

+1s.

linein[Figure d The smooth curve in

is the best-fit Gaussian to the histogram data.
It was found that the best fit is achieved by
excluding the "bump" in the right-hand tall
(represented by four orbits near 1.4). With
standard deviation and mean as free parame-
ters, we find m=-0.039 and s5=0.39, which is
reassuringly close to the RMS deviation, s =
0.41. A more quantitative view of the fit of the
histogram data to a Gaussian is shown in Fig-
Here we show the difference between
the observed and expected fraction of data
points faling into the histogram bins. The
error bars are £1s and represent the error in
the fraction, which is proportiona to ,/n (and
not the fractional error, which goes as 1/,/n).
The abscissa is the resdua in units of sSe.
There are no significant deviations, including
the points in the tail that were excluded in the
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fit. We aso caculated the skewness S of the
digtribution (al data included), finding S/ss =
2.6, where 0s = J15/N  is the theoretica
standard deviation for the skewness of an ideal
Gaussian distribution. It is difficult to interpret
the significance of a nonzero skewness, since it
is highly sengitive to the tail, which in turn suf -
fers from smal number statistics. A vaue 2.6
standard deviations from the expected is poss -
bly significant.

The nonzero skewness of our distribution
arises aimost entirely from the presence of the
four orbits making up the bump near 1.4 in Fig-
[ure4 Removing these orbits drops the skew-
ness to approximately one standard deviation
from a perfect Gaussian. Are these four orbits
anomalous, or do they just represent statistical
fluctuations? One can ask this question: given
the expected number of orbits in a particular
bin, what is the probability of finding the
observed number? One may aso adjust bin
width to gauge sendtivity to bin boundary
placement. For the bump orbits, that probabil -
ity ranges, depending on bin boundaries, from
Sx to eighteen percent — not unreasonably
smdl, and rdatively insenditive to bin width.
Nevertheless, we reintegrated these orbits with
microscopically different initial conditions and
found that they shifted out of the tail, removing
the bump. As a further check, we then reinte-
grated seven other orbits chosen at random
from the distribution and observed the same
kind of movement within the distribution.
Thus, we conclude that the noise in T, is such
that, in this distribution of only 440 points, fea-
tures like the small bump in are gtatis-
tical fluctuations.

The dotted lines in mark the 2 s

boundaries of the Gaussian fit. The standard
deviation of this distribution is ailmost a factor
of three smaller than the s calculated from the
LFM data involving Jupiter at its actual mass.
Thus, the distribution width is a function of
mass ratio. It is aso apparent from the figures
in LFM that s is an increasing function of
orbital inclination of the test particle.

Summary

We have examined the 25 "non-resonant"
outer-belt asteroids in light of the T.-T. relation
and found that their predicted event times,
though significantly less than the age of the
solar system Tss, are Statistically consistent
with their being present today. The key to this
conclusion is that chaotic orbits are, to a close
approximation, normally distributed about the
mean T.-T. relation for the particular mass
ratio and dynamica configuration in question.
We think that the 25 objects are the expected
digtribution tail of an originaly much larger
population, which has been thinned out by Jupi -
ter. The adjustable parameters of the T.-T.
relation are relatively insensitive to mass ratio
and dynamica configuration. However, the
distribution width — crucia for interpreting the
significance of predicted event times — is a
function of the mass ratio. We have noted the
existence of one such misinterpretation in the
recent literature, and we urge caution to the
dynamica community to prevent such mistakes
in the future.

The two facets of the problem discussed in
this paper compliment each other in the follow -
ing sense. Despite the fact that the distribution
width is a function of the mass ratio, [Figures 3
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for the 10 M, case clearly show that
some bodies further than ~2s from the relation
are present. We suggest, therefore, that the
minor planets in the outer belt with short T,
(and Te < Tss) are the counterparts of these
bodies for thereal, 1M, case.

We thank Brian Marsden and Gareth
Williams of the Minor Planet Center for their
usua cheerful and prompt responses to
requests for asteroidephemerides.
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