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Murison, Lecar, and Franklin
ABSTRACT

Recently, we analyzed a relation, found for chaotic orbits, between the Lyapunov time TL (the
inverse of the maximum Lyapunov exponent) and the "event" time Te (the time at which an orbit
becomes clearly unstable).  In this paper we treat two new problems.  First, we apply this TL-Te

relation to numerical integrations of 25 outer-belt asteroids and show that, when viewed in the
proper context of a Gaussian distribution of event time residuals, none of the 25 objects exhibits
an anomalously short Lyapunov time.  The current age of the solar system is approximately three
standard deviations or less from the anticipated event times of all of these asteroids.  We argue
that the Lyapunov times of the 25 remaining bodies are each consistent with the age of the solar
system, and that we are therefore seeing the remnants of a larger original distribution.  The bulk
of that population has been ejected by Jupiter, leaving the "tail members" as present-day survi -
vors.  This interpretation is consistent with current understanding of the behavior of trajectories
near KAM tori in Hamiltonian systems.  In particular, there is no need to invoke a new type of
motion or class of dynamical objects to explain the short Lyapunov timescales found for solar sys-
tem objects.  

Second, we discuss integrations of 440 fictitious outer-belt asteroids and show that the slope
and offset parameters of the TL-Te relation do not change with an increase in Jupiter's mass by a
factor of 10, and that the distribution of residuals in log Te is Gaussian.  This allows us to sensibly
and quantitatively interpret the significance of the Lyapunov timescale.  However, the width of
the residuals distribution is a function of mass ratio.  Since knowledge of the distribution width is
needed in order to interpret the significance of predicted event times, a calibration must be per -
formed at the mass ratio of interest.
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Just beyond the upper limit of the range consid-
ered here are the Hilda group asteroids.  See
Franklin et al. (1993) for further discussion and
an application of the TL-Te relation to these
interesting objects. The Lyapunov times of the
25 orbits considered here range from 3200 yr
to greater than 96,000 yr.  We interpret these
values in terms of the TL-Te relation and argue
that the few remaining bodies with short TL are
the expected remnants of an initially much
larger population.  An alternative view (Milani
and Nobili, 1992), that existing bodies with
short TL are members of a curious class of
objects described by the misleading label "sta-
ble chaos," seems unlikely.  The existence of
this purported class was inferred on the basis of
numerical integrations of a single body, (522)
Helga, and is, we claim, a misinterpretation of
the significance of the observed TL.  Our inter-
pretation is in fact consistent with well-
established behavior of trajectories near
invariant surfaces of Hamiltonian systems.

The TL-Te relation suffers from being
poorly established for times greater than 10 6-7

Jovian periods.  Levison and Duncan (1992)
have completed some integrations for up to 4
Gyr in the region of the proposed Kuiper belt,
and their results appear to follow the TL-Te

relation.  (They also report, for integrations
between Jupiter and Saturn and between Ura-
nus and Neptune, approximate values of a ≈
1.4, b ≈ 1.9, in good agreement with our val-
ues.)  However, encouraging as these results
are, there is still an insufficient number of Te >
106 T0 orbits calculated to date.  Since the
needed long-term integrations are difficult to
obtain, we also investigate here the conse-
I. INTRODUCTION
Strikingly large values of the maximum

Lyapunov exponent  are associated with cha-
otic motion in the solar system (e.g. Sussman
and Wisdom 1988, 1992; Laskar 1989; Torbett
1989; Mikkola and Innanen 1992).  In this
paper, we continue our efforts to interpret the
Lyapunov time, TL=1/γ, in the solar system in
light of a relation between TL and the "event"
time Te (Soper et al. 1990; Lecar et al. 1992a;
Lecar et al. 1992b, henceforth LFM; Levison
and Duncan 1992; Holman and Wisdom 1993):

(1)log Te
T0

= a + b log TL
T0

where T0 is an appropriate normalizing period.
The event time is the timescale on which the
qualitative character of the motion changes.
Events are indicated by, for example, a close
approach to a planet, the crossing of a plane-
tary orbit, or the escape of a satellite – in gen-
eral, an ejection or a collision.  We use the
notation Te, rather than Tc, the planetary orbit
crossing time (Lecar et al., 1992a), to reflect
this more generalized meaning of an event.  For
this study, T0=TJ, the orbital period of Jupiter.
Notice that, unlike the slope b, the value of the
offset parameter a scales with T0.  For orbits
interior to Jupiter, we find in this paper that
a=1.30 ± 0.03 and b=1.74 ± 0.03, in good
agreement with the preliminary results of LFM.
The TL-Te relation is the only known method
for prediction of the long-term instability
timescale of solar-system bodies.

Here we focus our attention primarily on
two issues.  First, we have calculated TL for all
25 known outer-belt asteroids not associated
with a major resonance (3.43 < a < 3.76 AU).
e 2



quences of increasing Jupiter's mass to speed
up perturbation effects.

II. METHOD
The dynamical system utilized for this study

is the three-dimensional elliptic restricted three-
body (ERTB) problem, with Jupiter as the sec-
ondary mass m2.  We integrated the equations
of motion in the rotating-pulsating frame (cf.
Szebehely 1967, Szebehely and Giacaglia 1964)
with a Bulirsch-Stoer extrapolation method
(e.g. Stoer and Bulirsch 1980, Press et al.
1992).  See Murison (1989) for details on the
numerical performance of the integrator.  The
(constant) eccentricity used for Jupiter in all
cases was eJ=0.04848.  This model is conven-
ient because of its simplicity.  The ERTB prob-
lem is the simplest dynamical model which is
still complex enough to exhibit all the important
behavior required for this study.  Comparisons
with a model that includes the effects of Saturn
on the motion of Jupiter (cf. Lecar and Frank-
lin, 1973) yielded no significant differences that
would affect our results in the region of the
asteroid belt considered here.  In particular, an
integration of (2311) El Leoncito yielded a TL

of 460 TJ, fully consistent with our value of 422
TJ.  Relying on a reasonable and simple statisti-
cal interpretation, as well as indications from
recent nonlinear dynamics literature, we conjec-
ture that the property of certain orbits to
exhibit long-term "stability" despite short
Lyapunov times is in fact to be expected, as we
argue in the next section.

Along with each orbit, a second "test" orbit
was integrated.  This second orbit started a dis-
tance 10-6 in phase space from the reference
orbit and was used for calculating the
Lyapunov exponent.  Renormalization of the
test orbit with respect to the reference orbit
occurred whenever the phase space distance
exceeded 10-4, thus avoiding saturation prob-
lems.  See e.g. Benettin et al. (1976) and Wolf
et al. (1985) for details on calculating Lyapu-
nov exponents.

We obtained orbital elements for the 25
known outer-belt asteroids not associated with
a low-order resonance from the Minor Planet
Center for the epoch JD 2448601.0 = 10 Dec.
1991.  The orientation elements were trans-
formed to Jupiter's orbital plane, in order to
determine the correct ERTB initial conditions.
The original and transformed elements are
shown in Table I.  Elements for Jupiter were
taken from Danby (1988). 

We performed numerical integrations for
each of the 25 asteroids.  Predicted event times
were determined by application of the TL-Te

relation, eq. (1), to the calculated Lyapunov
exponent.  The length of these integrations was
105 Jovian years (~1.2 Myr) – sufficient to
determine whether or not the predicted event
time is within several standard deviations of the
age of the solar system, TSS.  Longer integra-
tions, though certainly possible, are in fact
unnecessary, since the shortest Lyapunov times
(those most likely to be in serious disagreement
with the age of the solar system) are accurately
calculated.

In order to investigate the TL-Te relation for
a high mass ratio, we integrated 440 fictitious
outer-belt orbits over a wide range of initial
semimajor axis with m2=10 MJ.  The initial
eccentricity of these orbits was 0.05, the longi-
tude of pericenter 320 deg, inclination 3 deg,
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 Jupiter:  M = 135.417073,  i = 1.303713,  Ω = 100.382152,  ω = 273.819181,  e = 0.04848169,
  a = 5.21021558,   ν = 137.300833

88.26162.8230.660.1109.27156.053.54144.44Cybele65

296.09247.82.770.660.08311.08247.021.59181.742702 

5.5911.8819.590.660.031.9129.5419.98277.93Abastumani1390 

312.72204.7110.840.660.06319.15212.5910.2828.19Ellicott2196 

332.29128.015.410.660.07340.07134.486.44211.55James Bradley2634 

171.39326.297.880.660.03162.48349.327.3223.954236 

294.2755.326.390.660.14289.1774.597.54126.25Hermione121

162.02163.14 6.000.660.12173.45165.976.42169.49Huberta260

289.02167.349.640.670.08296.52174.159.92260.39Camilla107

159.77219.286.590.670.15169.27224.045.7842.47Devota1328 

276.4156.149.720.670.08272.9573.7510.8710.11Sylvia87

352.4159.274.230.670.05346.1579.715.42351.61Pushkin2208 

307.6543.0418.470.670.09304.9759.7819.4419.55Merapi536

328.0198.97 8.300.670.08329.74111.469.58257.68Liriope414

123.54275.544.260.670.06119.46293.812.98215.01Omarkhayyam3095 

227.04136.0117.970.680.10 230.13147.2818.8485.56Ulla909

256.66235.3315.50.680.05259.35246.9314.4186.5Meyer1574 

257.956.169.220.680.10 254.2773.9310.37113.581990WK

6.97348.4310.980.680.110.119.3710.88238.78Herodotus3092 

7.6616.837.790.680.12359.2239.398.34328.98Tabora721

119.77260.954.890.680.09121.67273.263.5982.78Albina2697 

153.29190.032.160.690.11187.71169.842.24234.52Kempchinsky2932 

242.22110.143.230.700.08249.06117.524.45355.81Helga522

171.04153.676.020.700.05181.53157.456.63218.11El Leoncito2311 

215.15150.369.010.720.08222.17157.649.65297Oda1144 
ω'Ω'i'a/aJeωΩiMAsteroid

Table I.  Initial orbital elements of the 25 outer-belt asteroids with respect to the equator and
equinox of 2000.0 and at epoch JD 2448601.0 = 10 Dec. 1991.  Primed elements are with
respect to the Jovian orbital plane.
true anomaly 40 deg, and the semimajor axis
ranged from 0.659 to 0.750 aJ.  Aside from the
semimajor axes, these particular values were
arbitrarily chosen.  The eccentricity of the pri-
maries was e2 = eJ.  The maximum length of the
integrations was 106 Jovian years (~12 Myr),
and an event was presumed to have occurred if
pag
rSun > 1.1 aJ (5.73 AU) for more than one
Jovian year.  The larger mass ratio allowed per-
turbations to develop faster and therefore
quicker acquisition of results.
e 4
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III. RESULTS

Outer-Belt Asteroids and Long-Term
Chaotic Motion

We present our results for the 25 outer-belt
asteroid integrations in Table II.  Times are in
units of Jupiter periods TJ (11.86 yr).  The
Lyapunov time TL is shown in column 3, while
the predicted escape time Te, in units of 106 TJ,
is in column 4.  Te was calculated from eq. (1)
using b=1.74 and a=1.30.  These values were
determined from the semimajor axis survey
results of this study, presented below.  They
agree with the values found in LFM for aster-
oid orbits interior to Jupiter.  The 25 orbits fall
into three categories, as denoted in column 5.
An "A" signifies a clearly chaotic orbit, where
pag

Figure 1.  Typical behavior of the Lyapunov exponent γ
as a function of time (in Jovian periods), illustrating three

types.  The curve labeled A is strongly chaotic; an

approximate value for γ is quickly found.  Curve B is

"possibly-chaotic," and further integratio n is required to

determine the asymptotic value of γ.  Curve C represents a

typical quasiperiodic (or at best very weakly chaotic) orbit.
the Lyapunov exponent as a function of time
appears to have leveled off to a nonzero value.
A typical plot of γ in such a case is shown in
Figure 1, curve A.  A "B" in column 5 signifies
a probable chaotic orbit, where γ appears to be
leveling off but the integration was not long
enough to determine a value.  The values of TL

calculated for these orbits are therefore lower
limits.  A typical plot for this case is shown in
Figure 1, curve B.  A "C" in column 5 means
that the orbit was quasiperiodic (or very weakly
chaotic at best), where the Lyapunov exponent
is asymptotically zero (or nearly zero).  Curve
C of Figure 1 shows γ vs. t for a typical orbit of
this type.  The actual TL for these orbits is very
large.  We could have performed longer inte-
grations and, possibly, thereby removed some
of the > signs from columns containing TL and
Te – i.e., converted class C into class B, or
class B into class A.  This would be a noble
deed, but not an especially valuable use of time
because our real interest and concern centers
on just those minor planets with short Lyapu-
nov times.

An important characterization of the TL-Te

relation is the width  of the distribution of
orbits about the best fit to eq. (1).  It may be
used to interpret the significance of a given
value of TL and therefore relate it to physical
systems.  In data obtained from LFM, we found
that the distribution of residuals in log Te for
the Jupiter-Sun system and asteroid orbits
inside Jupiter's orbit was consistent with a
Gaussian shape with standard deviation σ =
0.98.  Thus, for a given population of objects,
some nonzero percentage would be expected
to lie in the tail of the distribution.  Take for
example the asteroid in Table II with the
e 5



Chaotic Motion in the Outer Asteroid Belt

15:83.03A0.41299Cybele65

15:81.4A16.212,4632702 

****<0.86C>54.75>5000Abastumani1390 

15:8<1.19B>25.95>3200Ellicott2196 

13:7<1.08B>33.02>3700James Bradley2634 
13:71.29A20.792,8414236 

13:71.11A30.983,571Hermione121

13:73.1A0.34270Huberta260

11:61.21A24.823,145Camilla107

20:113.06A0.38287Devota1328 

20:11<0.48C>128.27>8100Sylvia87

20:11<0.94B>45.03>4400Pushkin2208 

20:111.3A20.282,801Merapi536

20:11<1.24C>23.02>3000Liriope414

20:11<0.86C>54.29>4900Omarkhayyam3095 

16:9<1.37B>17.31>2600Ulla909

16:91.08A33.223,717Meyer1574  
16:91.37A17.382,5641990W

16:91.41A15.732,421Herodotus3092 

16:91.45A14.372,299Tabora721

16:9<1.40B>16.07>2500Albina2697 

12:7<1.62B>9.86>1900Kempchinsky2932 

12:7<1.27B>21.74>2915Helga522
12:72.76A0.75422El Leoncito2311 
13:8<1.50B>12.75>2100Oda1144 

resonanceσ   Te (106)TL  Asteroid

Table II.  Results of 25 outer-belt asteroid integrations.  Times are in
Jovian orbital periods.  See text for the meaning of σ.  Final column lists
the most significant resonance encompassed by the observed range in
semimajor axis (see text).
shortest Lyapunov time, (260) Huberta, with
TL=270 TJ and Te=323,000 TJ.  The age of the
solar system, TSS = 3.78x108 TJ = 4.5 Gyr, cor-
responds to a residual of log TSS - log Te = 3.07
= 3.13 σ.  We claim that this apparently small
value of TL, and the corresponding Te, is not in
significant conflict with objects still being pre-
sent after a time of order TSS.  One could argue
pag
that (260) Huberta belongs to the tail of a
population distributed around the mean defined
by eq. (1).  Knowledge of  thus prevents a seri-
ous misinterpretation of TL.

Our values for σ are lower limits; the longer
the asteroids remain in their present orbits, the
more significant will be their deviation from the
mean relation eq. (1).  If our interpretation is
e 6
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Fig
(522
tion 

incli
correct, we would expect that an original popu-
lation of asteroids would be largely depleted by
now, leaving a few members in the large-Te tail
as present-day survivors.  We have thus quanti-
tatively determined the short-TL boundary for
this type of object.  If this boundary were
inconsistent with the age of the solar system,
we would be faced with a quandary.  However,
we argue that this is not the case.

Recently, Milani and Nobili (1992) reported
an integration of just one outer-belt asteroid,
(522) Helga.  They found a Lyapunov time of
roughly TL=580 TJ (6900 yr).  Unaware of the
pag

ure 2.  Variation of TL with initial semimajor axis for
) Helga (top panel).  Successive panels show the varia -
of the semimajor axis, orbital eccentricity, and orbital

nation, averaged over the integration time of 105 TJ.
actual significance of this value, they claimed
discovery of (522) Helga as the first known
example of a new class of dynamical behavior
for which they contrived the misleading and ill-
considered label "stable chaos."  They go on to
claim that TL in this case must therefore be
"meaningless."  However, using our initial con-
ditions we find TL>2915 TJ, corresponding to
only 1.3 σ from TSS for Te.  With slight changes
in the initial conditions (cf. Figure 2), we were
able to drop (522) Helga into the 12:7 reso-
nance with Jupiter, finding an average value in
the resonance of TL=490 TJ, which is even
smaller than, but comparable to, Milani and
Nobili's value and corresponds to
Te≈950,000 TJ.  (The similarity of our value for
TL, obtained with the ERTB equations of
motion, and Milani and Nobili's value, resulting
from integration of all the planets, lends further
support for our use of the simpler ERTB prob-
lem.)  Yet even this value of Te is only 2.7 σ
from TSS.  Thus we find it difficult to believe
that the longevity of (522) Helga despite an
apparently short TL is evidence of a new class
of objects or a new physical concept.  Rather, it
is more likely that Helga is a tail member of the
distribution of residuals in Te about the mean
TL-Te relation eq. (1).  Indeed, we conjecture
that (522) Helga is not stable, and that it will
eventually suffer a catastrophic change in its
orbit (cf. Wisdom, 1983, figs. 1 and 4).  We
argue this point in more detail below.

The next to last column of Table II shows
the number of standard deviations that the age
of the solar system lies from the expected value
for Te as calculated from TL and the TL-Te rela-
tion.  Of the clearly-chaotic orbits, for which
we can calculate a reliable Te, three asteroids
e 7
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are close to three standard deviations (asteroids
1328, 260, and 65), one is at 2.8 σ, and the rest
lie well within 2 σ.  This distribution is consis-
tent with the notion that in the outer-belt aster -
oids we are seeing the remnants of a larger
original distribution.  The bulk of that popula-
tion has been cleared out by Jupiter, leaving the
long-Te tail members to survive to the present.

The observed value of γ fluctuates with
small changes of the initial conditions.  For
example, Figure 2 shows the Lyapunov times-
cale as a function of initial semimajor axis for
(522) Helga.  The value of TL is greater than
32,000 yr (corresponding to Te ~ 22 Myr),
except in a narrow interval around the 12:7
resonance, a0∈[0.69770, 0.69815], where TL

averages about 5800 yr (Te ~ 0.95 Myr).  The
open triangles denote a lower limit, since the
Lyapunov exponent in these cases did not level
off to a definite value by the end of the integra-
tion (cf. curves A and B of Figure 1).  Also
shown in Figure 2 are the corresponding mean
values of semimajor axis, eccentricity, and incli-
nation, averaged over the length of the integra-
tions (100,000 TJ).  The 12:7 mean motion
resonance is at a=0.697922 aJ, marked by the
symbol in the second panel of Figure 2.  We
noted variations in TL of roughly 12 percent
within the resonance.  The chaos exhibited by
the motion of (522) Helga is apparently associ-
ated with the 12:7 resonance, and the semima-
jor axis width of this resonance is clearly
delineated by the behavior of TL, the mean
eccentricity, and the mean inclination.  The last
column in Table II shows the nearest mean
motion resonance encompassed by the given
orbit over the length of the 105 TJ integrations.
Those with short Lyapunov times are, like
page
(522) Helga, possibly associated with the cor-
responding resonance for the particular initial
conditions we used.  The range in semimajor
axis for (522) Helga was more than a factor of
7 larger than the width of the resonance as evi-
denced in Figure 2.  Asteroid (1390) Abastu-
mani, falling between 15:8 and 13:7, was the
only one whose semimajor axis did not at any
time in our numerical integration cross a reso-
nance.  (This asteroid exhibited behavior con-
sistent with quasiperiodic motion, cf. Table II.)
We are not certain to what extent, if any, the
asteroids are affected by the corresponding
resonances, but the association is suggestive
(see below).

An Interpretation of Short Lyapunov
Times

We propose the following picture for the
dynamics leading to an "event."  First we
review briefly the relevant dynamics of a two
degree of freedom system, then we conjecture
that analogous behavior is occurring in the
much more complicated, many degree of free-
dom, Hamiltonian system represented by the
outer-belt asteroids.  

It is well-known that, in a two degree of
freedom Hamiltonian system, invariant surfaces
(KAM tori) divide the phase space.  Under the
influence of a sufficiently strong perturbation,
the "outermost" invariant surfaces are
destroyed, giving rise to a global sea of chaos
surrounding an inner stable region, where
invariant surfaces still exist.  At the core of the
stable region is a stable period one orbit.  Fur-
ther out, past the outermost intact surface and
embedded in the chaotic sea, are secondary
invariant surfaces surrounding elliptic period n
 8
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orbits.  Each of these period n islands has asso-
ciated with it a similar hierarchy of higher-order
island chains, and so on.  

Consider an outermost intact invariant sur-
face.  A sufficient increase in the magnitude of
the perturbations will produce a tear in this sur-
face.  Under dynamical evolution of the sur-
face, this tear will propagate and reproduce
over the surface, producing a fractal distribu-
tion (Cantor set) of holes or gaps, known as a
cantorus (Percival, 1979; MacKay et al., 1984).
The surface is not completely destroyed, but
neither is it any longer impervious to diffusion
of orbits across it.  There is a countable infinity
of holes.  The stronger the perturbation(s), the
more "porous" is the cantorus.  Thus, it is pos-
sible for an orbit to be trapped in a region of
phase space, enclosed by a cantorus of small
porosity, for some time before encountering a
"hole" and escaping into a more unstable
region.  Some orbits may escape quickly; oth-
ers will be trapped for some time.  Given an ini-
tial population of such orbits, one would expect
a distribution of escape times – perhaps Gaus-
sian.  The same argument can be used for orbits
near the secondary islands, which themselves
will be enclosed by cantori (and higher-order
islands, etc.).

Analytic calculation of diffusion rates
across hierarchies of cantori is very difficult.
As a trajectory passes through a cantorus, it
may be derailed to "shadow" a higher-order
island chain, which itself has a grid of cantori
gaps, and so on.  Numerically, it can be shown
that the distribution of orbits initially in the
neighborhood of an island remaining in that
neighborhood (i.e., the "survival" probability) is
pag
(2)P(t) i t−b

for long times t (normalized by the orbit
period), where  β ≈ 1.4 for a small, isolated
island (Chirikov and Shepelyansky, 1984b;
Karney, 1983; Lichtenberg and Lieberman,
1992).  For the main island of the standard
map (Chirikov, 1979), β ≈ 1.45 (Chirikov and
Shepelyansky, 1984a; Murray, 1991).  It
would be reasonable to wonder if the tori sur-
rounding regular islands is the main barrier to
diffusion of a trajectory outward.  However, it
appears that the sticking time to a given sur-
face is the dominant process in impeding phase
space transport (Chirikov and Shepelyansky,
1984a,b; Murray, 1991).  The departures of
diffusion from unimpeded random motion are
due to a small percentage of orbits that are
stuck around KAM surfaces bounding a region
of chaotic motion.

We may associate an escape past a particu-
lar cantorus with an "event" in an asteroid
orbit, since (going back to the two degree of
freedom analogy) successive cantori are rapidly
more porous, leading quickly to the global sea
of chaos and therefore wild excursions of the
orbit.  We propose that this is a reasonable pos-
sibility for the mechanism displayed by the
outer-belt asteroids.  The foregoing has been
well-established for simpler Hamiltonian sys-
tems (cf. Lichtenberg and Lieberman, 1992;
Wiggins, 1990).  

An alternative view is that KAM tori are
"sticky."  Karney (1983) was the first to
numerically study the stickiness of KAM tori,
finding that long-time correlation functions for
a version of the standard mapping are strongly
governed by the dynamics near KAM surfaces.
e 9
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It has often been observed that orbits near an
invariant surface become "trapped" into almost
regular orbits for long (but finite) times (Perry
and Wiggins, 1994; Kaneko and Konishi, 1994;
also Wisdom, 1983).  Jensen (1984, a review)
and Lai et al. (1992, recent work) apply this to
the surviving fraction of un-ionized atoms in a
model of the ionization of surface-state elec-
trons in an oscillating electromagnetic field.
Such "stickiness" will have a profound effect on
the statistical properties of a system, including
diffusion rates or escape rates.  A population of
trajectories will contain some members lying
closer than others to a KAM surface, leading to
a distribution of escape times, some of which
will be long.

Perry and Wiggins (1994) show that the
survival probability for an N-degree of freedom
page

igure 3.  Log of observed event time, Te, vs. the log of
e Lyapunov time, TL, for the 440 survey orbits calcu-

ted with m2=10 MJ.  The solid line is an unweighted

ast squares fit, with slope b=1.74 ± 0.03 and intercept

=1.30 ± 0.03.  Dotted lines mark the 2σG boundaries of a

aussian fit to the residuals.
Hamiltonian depends strongly on the dynamics
near the KAM tori.  Solutions beginning there
simply take a long time to move away, despite
the fact that the motion is chaotic.  They rigor-
ously derive a lower bound on the time it takes
to move away from a torus:

(3)T m C
r e(K b / r)a

where T is the lower bound on the time it takes
to double the distance from the surface, r is the
distance from the surface, C and K are positive
constants that depend on the analytic properties
of the Hamiltonian, β > 0 is a measure of the
irrationality of the flow, α = 1/(N+2), and N is
the number of degrees of freedom.  The more
irrational the flow (i.e., the higher the reso-
nance order), the more "sticky" is the surface.
Lower bounds like this were first obtained by
Nekhoroshev (1977) for a class of near-
integrable Hamiltonian systems and are there-
fore known as Nekhoroshev type bounds.
They were worked out for the time to move
away from elliptic equilibrium points by Gior-
gilli (1988) and Giorgilli et al. (1989).  

The extension to the outer-belt asteroids
follows naturally, and we do not therefore
require the existence of some mysterious, new
class of objects or type of motion in order to
explain the observed behavior.  It is, in fact,
quite consistent with the above-mentioned pre-
vious studies.  The association with KAM tori
also explains our observation that the outer
asteroid orbits considered here all lie near a
high-order resonance with Jupiter, the main
perturber.
 10
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Figure 4.  Histogram of the difference of log Te (ob-
served event time) from the linear fit to the semimajor

axis survey data (solid line) of Figure 3.  Smooth curve

is the best-fit Gaussian, with σG=0.39.

Figure 5.  Difference between observed and expected
fraction of data points falling into histogram bins of

Figure 4, for a Gaussian distribution.  Error bars are

±1σ.
Semimajor Axis Survey and Residuals
Distribution

The results of a semimajor axis survey with
m2 = 10 MJ are displayed in Figure 3.  The solid
line is the unweighted least squares fit to 440
orbits, with slope b=1.74 ± 0.03 and intercept
a=1.30 ± 0.03 (all quoted errors are 1 σ formal
uncertainties).  The standard deviation of the
residuals is σ = 0.41.  Agreement with the LFM
values for orbits interior to Jupiter (b=1.73 ±
0.19, a=1.53 ± 0.34) is well within the formal
uncertainties.  This agreement illustrates the
apparent robustness of the relation.  It appears
that a and b are insensitive to the mass ratio for
this dynamical configuration.  

The distribution of the data points in log Te

from the least squares fit (i.e., the residuals) is
approximately Gaussian.  Figure 4 is a histo-
gram of the distance in log T  from the solid
e

page
line in Figure 3.  The smooth curve in Figure 4
is the best-fit Gaussian to the histogram data.
It was found that the best fit is achieved by
excluding the "bump" in the right-hand tail
(represented by four orbits near 1.4).  With
standard deviation and mean as free parame-
ters, we find µ=-0.039 and σG=0.39, which is
reassuringly close to the RMS deviation, σ =
0.41.  A more quantitative view of the fit of the
histogram data to a Gaussian is shown in Fig-
ure 5.  Here we show the difference between
the observed and expected fraction of data
points falling into the histogram bins.  The
error bars are ±1σ and represent the error in
the fraction, which is proportional to  (andn
not the fractional error, which goes as ).1/ n
The abscissa is the residual in units of σG.
There are no significant deviations, including
the points in the tail that were excluded in the
 11
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fit.  We also calculated the skewness S of the
distribution (all data included), finding S/σS =
2.6, where  is the theoreticalrS = 15/N
standard deviation for the skewness of an ideal
Gaussian distribution.  It is difficult to interpret
the significance of a nonzero skewness, since it
is highly sensitive to the tail, which in turn suf-
fers from small number statistics.  A value 2.6
standard deviations from the expected is possi-
bly significant. 

The nonzero skewness of our distribution
arises almost entirely from the presence of the
four orbits making up the bump near 1.4 in Fig-
ure 4.  Removing these orbits drops the skew-
ness to approximately one standard deviation
from a perfect Gaussian.  Are these four orbits
anomalous, or do they just represent statistical
fluctuations?  One can ask this question:  given
the expected number of orbits in a particular
bin, what is the probability of finding the
observed number?  One may also adjust bin
width to gauge sensitivity to bin boundary
placement.  For the bump orbits, that probabil-
ity ranges, depending on bin boundaries, from
six to eighteen percent – not unreasonably
small, and relatively insensitive to bin width.
Nevertheless, we reintegrated these orbits with
microscopically different initial conditions and
found that they shifted out of the tail, removing
the bump.  As a further check, we then reinte-
grated seven other orbits chosen at random
from the distribution and observed the same
kind of movement within the distribution.
Thus, we conclude that the noise in TL is such
that, in this distribution of only 440 points, fea-
tures like the small bump in Figure 4 are statis-
tical fluctuations.
page
The dotted lines in Figure 3 mark the 2  σG

boundaries of the Gaussian fit.  The standard
deviation of this distribution is almost a factor
of three smaller than the σ calculated from the
LFM data involving Jupiter at its actual mass.
Thus, the distribution width is a function of
mass ratio.  It is also apparent from the figures
in LFM that σ is an increasing function of
orbital inclination of the test particle. 

Summary
We have examined the 25 "non-resonant"

outer-belt asteroids in light of the TL-Te relation
and found that their predicted event times,
though significantly less than the age of the
solar system TSS, are statistically consistent
with their being present today.  The key to this
conclusion is that chaotic orbits are, to a close
approximation, normally distributed about the
mean TL-Te relation for the particular mass
ratio and dynamical configuration in question.
We think that the 25 objects are the expected
distribution tail of an originally much larger
population, which has been thinned out by Jupi-
ter.  The adjustable parameters of the TL-Te

relation are relatively insensitive to mass ratio
and dynamical configuration.  However, the
distribution width – crucial for interpreting the
significance of predicted event times – is a
function of the mass ratio.  We have noted the
existence of one such misinterpretation in the
recent literature, and we urge caution to the
dynamical community to prevent such mistakes
in the future.

The two facets of the problem discussed in
this paper compliment each other in the follow-
ing sense.  Despite the fact that the distribution
width is a function of the mass ratio, Figures 3
 12
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and 4 for the 10 MJ case clearly show that
some bodies further than ~2σ from the relation
are present.  We suggest, therefore, that the
minor planets in the outer belt with short TL

(and Te < TSS) are the counterparts of these
bodies for the real, 1 MJ case.
page
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