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ABSTRACT

In three examples representative of Solar System dynamics, we find that the Lyapunov time, T3, (ie.,
the inverse of the Lyapunov exponent) and the time for an orbit to make a sudden transition T are
strongly correlated. The relation between the two times is Tc « T, with b=1.8. The first example
examines asteroid orbits interior to Jupiter; the sudden transition occurs when the asteroid makes a
close approach to Jupiter, which occurs close to the time when the asteroid’s orbit crosses Jupiter’s
orbit. The second example examines orbits of hypothetical asteroids between Jupiter and Saturn; the
sudden transition occurs when the asteroid’s orbit crosses the orbit of either of the planets. The third,
considerably different, example examines massless bodies that initially orbit the smaller of the two
masses of a binary system. In this case, the escape of the satellite signals the sudden transition. We
have numerically integrated about 150 orbits in the first and second examples, and about 1000 orbits in
the third example. In the first two examples, all three bodies were coplanar. In the third example, the
initial inclination of the test particle was varied from 0° to 60°. There was, at most, a weak dependence
on inclination. The tight clustering of the exponent b was remarkable, considering the widely different
dynamical systems. The maximum departure of b from 1.8 was 14%, and the average departure was
less than 7%. The correlation between 7« and T holds over at least six orders of magnitude in Tg;
the longest integrations for asteroids interior to Jupiter extended for 10® yr. The Lyapunov time
typically reaches its asymptotic value in a few thousand orbits, and then it can be used to predict

sudden events (7¢) that occur at much later times, e.g., the lifetime of the solar system.

1. INTRODUCTION

We first noticed, in a study of the orbits of hypothetical
asteroids between Jupiter and Saturn, that the Lyapunov
time, 77 (the inverse of the Lyapunov exponent) and the
time for the asteroid orbit to cross the orbit of Jupiter or
Saturn T were correlated (Soper et al 1990). Subse-
quently, we found, in studies of the orbits of hypothetical
asteroids in the outer asteroid belt, that T; was correlated
with the time for the asteroid orbit to cross Jupiter’s orbit
(Lecar et al. 1991). In both cases, we found T¢ « Tf, with
b=1.7, although the constant of proportionality was dif-
ferent in the two cases. We were finally convinced of the
generality of the correlation by the 1000 orbits computed
for this study by Murison. He considered elliptic restricted
three-body orbits in which the massless particles begin mo-
tion around the secondary mass, which was 1/9 the mass
of the primary and had an eccentricity of 0.1. In this ex-
ample, the transition occurs when the particles escape the
secondary by exiting through one of the colinear Lagrange
points. Here too, T¢ « T’{, and the average value of b was
1.8. This result held for massless particles in the plane of
the binary, and inclined by 3°, 10°, 15°, 30°, 45°, and 60°.
There may be a weak dependence on inclination.

The purpose of this paper is to present numerical evi-
dence for the correlation. In all cases, the statistical signif-
icance of the correlation is strong. The weakest case had a
linear correlation coefficient of 0.78 with 55 points. Put
another way, the standard deviations of the exponent b
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were on average 6% of b, and in the worst case, 14% of b.
Thus, in the worst case, b=0 is 9 standard deviations from
the mean.

The validity of this experimental result does not rest at
all on our tentative effort below to model the process.
However, we would feel more secure if the numerical re-
sults were backed up by a quantitative theory. We are
actively pursuing such a theory and we encourage our
readers to do the same.

For the purposes of orientation, we proceed to outline a
model. Consider orbits in the outer asteroid belt. If the
orbits were unconstrained by isolating integrals, we would
expect that the main effect of Jupiter would be to perturb
the eccentricity of the asteroid until it crossed the orbit of
Jupiter. A simple model that preserves the essential physics
supposes that an asteroid, a distance d from Jupiter, re-
ceives a radial impulse at conjunction of magnitude

Av= (GMJ/dZ) (Zd/Vrel)’

where V., =Vd/2R and V2=GM®/R. The change in the
eccentricity is Ae=Av/V, whence

Ae=4u(R/d)?, where p=M;/Mg,

If these changes occur with random sign, then, in the
spirit of random walk calculations,

de?
E=V(Ae)2,
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where v=uv,,/27R=(d/2R)(1/Ty), and T} is Jupiter’s or-
bital period (11.8 yr). Thus, e=8(u)2(R/d)*(t/Ty).

The asteroid’s orbit will cross Jupiter’s orbit when
e=(d/R). Thus,

te/Ty=(1/8u?)(d/R)>,

where t is the crossing time. For p=p;,,=1/1047, and
d/R=0.35 (corresponding to asteroids with semimajor
axes just outside of the 2:1 resonance with Jupiter), we
have to/Ty=10’.

In contrast, the numerical integrations show that many
orbits, with initially small eccentricities, do not become
Jupiter crossers in 107 T}. This large discrepancy in time
scales indicates that the numerically integrated orbits are
constrained, for long periods of time, by almost-isolating
integrals.

A picture we find intuitively appealing was offered by
Froeschle & Scheidecker (1973). In a two-dimensional
surface-of-section, they pictured a finite number of isolat-
ing integrals as nested ellipses, with an outermost ellipse
surrounded by chaotic orbits. Perturbations blur the iso-
lating integrals and it becomes possible for a particle to
diffuse across the now-fuzzy nested ellipses. They indicate
that the orbit random walks across the N ellipses, in N°
steps. If their model is applicable to our numerical exper-
iments, it implies that the Lyapunov time is a function of
the distance of the orbit from the chaotic zone. This is
certainly qualitatively correct; the Lyapunov time in-
creases as the distance from the chaotic zone increases.

In the following sections, we treat the three examples
separately; i.e., asteroids interior to Jupiter, asteroids be-
tween Jupiter and Saturn, and escaping satellites. The re-
sults of all the experiments are summarized in the conclud-
ing section.

2. ASTEROIDS INTERIOR TO JUPITER

We recently integrated a grid of asteroid orbits interior
to Jupiter, with 14 semimajor axes ranging from 0.63 to
0.76 (in units where aj,y.,=1.0) in increments of 0.01,
and at 10 values of the eccentricity from 0.01 to 0.19 in
increments of 0.02. The integrations extended for 1 million
Jovian years (about 12 mil. yr), and in some cases for 10
mil Jovian yr, unless the asteroid crossed Jupiter’s orbit
first. Jupiter was in an elliptic orbit with its eccentricity
varying in the 54 000 yr period, and with its line of apsides
rotating with the 300 000 yr period induced by the secular
perturbations of Saturn (Brouwer & Van Woerkom 1950).
However, Saturn was not included in the integration. All
bodies were confined to a plane.

In following the progress of integrations on the com-
puter screen, we noticed that a crossing of Jupiter’s orbit
was shortly followed by a close approach to Jupiter. We
documented the difference between the time it took to cross
Jupiter’s orbit and a very close approach to within 5 Jovian
radii of Jupiter for a small sample of eight cases: it was 2%
on the average and always less than 6% (Franklin et al.
1989). Details of the method of numerical integration can
also be found in that paper. For computational conve-
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FIG. 1. log(T¢) vs log(Ty) for 55 orbits of test particles in the outer
asteroid belt. A least-squares fit of a straight line to these data, log(7T¢)
=a+blog(Ty), yields b=1.73, 0,=0.19, a=1.53, and 0,=0.34. The
longest integrations extend for 107 Jovian yr (about 1.2 10® yr).

nience, we may therefore use the orbit crossing criterion,
except in cases of resonance, where an asteroid’s orbit can
cross Jupiter’s orbit and still avoid a close approach. In
that case, we use the criterion of close approach. Thus, T
is defined as the time when the asteroid’s orbit crosses
Jupiter’s orbit, R > 1.0, except in the cases of resonance.

To calculate the Lyapunov exponent, we computed the
difference in longitude 84 between two orbits that started
with the same initial conditions except for an initial longi-
tude difference, (S/lo=10_6 deg. For unstable orbits, the
subsequent behavior of A is well represented by 61(¢)
=064 exp(yt) =6Aq exp(t/T;). We were particularly in-
terested in whether or not the Lyapunov exponent calcu-
lated at the start of the integration could be used to predict
the crossing time. For that reason, 7} was computed at the
start of the integration, using the first 100 000 Jupiter pe-
riods (less if saturation occurred sooner). The portion of
the integration that was used in the calculation of T was
always much shorter than T.

displays a plot of log(T¢) vs log(Ty) for 55
points from this study (time units are Jovian years). A
least-squares fit of a straight line to these data,

log(T¢)=a+blog(Ty)

yields b=1.73, ¢,=0.19, a=1.53, and 0,=0.34.
Note that the numerical value of the intercept @ depends
on the unit of time. Explicitly, we have

log(Tc/Ty)=a+blog(Ty/Ty),

where T is the unit of time. We discuss, in the section on
the third example, why Ty, is the appropriate unit of time.
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FIG. 2. (a) log(T¢) vs log(Ty) for 48 test particle orbits between
Jupiter and Saturn, with the planets in fixed ellipses. The longest cross-
ing times were 10° Jovian yr. In this example, b=1.75, 0,=0.07, a
=0.50, 0,=0.14. Within the errors, the exponent b is equal to that of
the previous example, but the intercept a is not. (b) log(T¢) vs log(Ty)
for 45 test particles between Jupiter and Saturn, with the planets in the
rotating ellipses with varying eccentricities. In this example, b=1.72,
0,=0.09, a=0.42, and 0,=0.19.

Scatter in log(7 ) is intrinsic to the problem. The orbits
that cross Jupiter’s orbit are chaotic. Small changes in the
initial conditions, in the integration routine, or in the per-
turbations result in orbits that depart from each other ex-
ponentially. Thus, the crossing time is a statistical quantity
with intrinsic error bars.
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FIG. 3. Typical behavior of the Lyapunov exponent with time. Time is
in units of the binary period.

3. ASTEROIDS BETWEEN JUPITER AND SATURN

We did this problem twice: once with Jupiter and Sat-
urn in nonrotating, constant eccentricity ellipses, and once
with the eccentricities varying and the line of apsides ro-
tating according to the secular perturbations given by
Brouwer and van Woerkem. Specifically,

h=esin(w) =4 sin(at) + B sin(St)

and

k=e cos(w)=A cos(at) + B cos(fBt),

where A4;=0.0445, By= —0.0165, Ag=0.0360, and Bg
=0.0490. The periods 27/a=306 000 yr (25 780 T}) and
27/B=46 000 yr (3875 T}).

displays log(T¢) vs log(Ty) for the fixed
ellipse case. In this example, 6=1.75, 0,=0.07, a=0.50,
and 0,=0.14. Again, we note that the numerical value of
the intercept, @, depends on the unit of time, which in this
case is T7,,.

displays log(T¢) vs log(Ty) for the rotat-
ing ellipse case. The 45 points are correlated in the same
way with b=1.72, 0,=0.09, ¢=0.42, and 0,=0.19.

4. ESCAPE OF SATELLITES OF THE SMALLER MASS OF A
BINARY SYSTEM

Murison (1989b) has previously investigated escape or-
bits in the circular restricted problem. The method of in-
tegration is described in Murison (1989a). For this study,
u=M,/M=0.1 where M=M,+M,, and the unit of time
is the binary period. The secondary M, was placed in an
elliptic orbit with e=0.1 in most of the cases, but in one
case we took e=0.6. The massless particle started on the
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FIG. 4. (a)-(g) log(T¢) vs log(T) results for the escape of satellites from the secondary of a binary system. Time is in units of the binary period. (a)
is the coplanar case, while (b)-(g) are 3°, 10°, 15°, 30°, 45°, and 60° inclination, respectively.
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FIG. 5. log(T¢) vs log( Ty ) for the escape of satellites from a secondary
in a highly elliptic orbit with e=0.6. The orbits were coplanar.

line connecting the primary and secondary (the x axis)
and on the side of the secondary away from the primary.
The initial distance from the secondary, g, was 0.125 in
units where binary semimajor axis is one. The initial ve-
locity was along the positive y axis (prograde motion). The
initial eccentricity of the test particle varied from 0.25 to
0.45. Initial eccentricities less than 0.25 had very long es-
cape times (Tc> 10° Tinary)- The inner and outer La-
grange points are at 0.709 and 1.360. We note that even
when the secondary is at periastron, the distance from the
instantaneous inner Lagrange point to the secondary is

TABLE 1. Summary of statistics: Least-square fit of the relation log(7¢)
=a+blog(Ty), N=number of orbits, b=exponent, o,=standard error
of b, a=intercept, o,=standard error of @, r=linear correlation coeffi-
cient.

Description N b g, a o, r

Interior to Jupiter 55 173 019 153 0.34 0.78

Jupiter and Saturn; 48 175 007 0.50 0.14 0.91

fixed ellipses

Jupiter and Saturn; 45 172 009 042 0.19 0.95

rotating ellipses

Satellites:

e=0.1 = 0° 126 1.78 0.06 145 0.04 0.94
i= 3 130 197 007 1.24 0.05 0.94
i=10° 107 1.88 0.06 1.25 0.05 0.95
i=15° 100 204 006 117 0.05 0.96
i=30° 51 164 009 135 0.06 0.94
i=45° 144 168 009 141 0.06 0.84
i=60° 154 154 0.12 1.80 0.05 0.74

e=0.6 i=0° 163 197 005 2.02 0.03 0.95

Average value 1.79 009 147° 0.08% 090

*Without the two Jupiter and Saturn cases.

e

2.0k P

FIG. 6. Values and standard errors of the slope b and the intercept
a for the 11 examples. The average value of b was 1.79. In all cases,
log(Tc)=a+blog(Ty) is a very good fit to the data. The slopes
have a value close to 1.8. However, the intercept for the Jupiter—
Saturn case is different than the intercept for the other cases.

0.262 which is more than twice a,;. Thus, to cross a La-
grange point (i.e., to escape) the test particle must increase
its semimajor axis as well as its eccentricity.

Integrations were terminated when the distance of the
test particle from the secondary was >0.5. The largest Ly-
apunov exponent was calculated in the usual way using the
distance in phase space and averaging over the entire inte-
gration. Periodic rescaling removed the problem of satura-
tion (cf. Benettin et al. 1976). In long integrations of order
10% orbits, the Lyapunov exponent tended to an asymptotic
value in about 10’ orbits, which explains why these data
are consistent with the earlier examples. In shorter inte-
grations, the Lyapunov exponent reached its aymptotic
value before escape occured. [Figure 3|shows typical behav-
ior of the Lyapunov exponent with time.

displays the log(Tc) vs log(Ty) results for
the coplanar case. The same relation holds between
log(T¢) and log( Ty ) with b=1.78, 0,=0.06, a=1.45, and
0,=0.04.

Here, the unit of time is the binary period, and we notice
that the numerical value of the intercept is consistent with
the value found in the first example. The dynamical system
in both examples consists of a dominant central mass with
one significant perturber.

We were curious to see if the exponent b depended on
the number of degrees of freedom. We therefore integrated
sets of orbits with inclinations of 3°, 10°, 15°, 30°, 45°, and
60°. Figures E(o)E2ID Mdisplay log(T¢) vs log(Ty) for
these cases. It appears there may be a weak dependence on
inclination, though the errors are consistent with no incli-
nation dependence.
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Finally, we integrated an extreme coplanar case where
the eccentricity of the secondary was 0.6. Log(T¢) vs
log(7T) for 163 integrations is presented in This
case was also consistent with the previous case.

summarizes the statistics for all the cases.

5. CONCLUSIONS

The striking feature of these results is the tight cluster-
ing of the values of b near 1.8 in the relation T¢ « Tf
displays the values and standard errors of b and a.
To apply this result to other problems, one must remember
that the unit of time determines the numerical value of the
constant of proportionality. We adopt the following pre-
scription:

(Tc/To) =A(T /Ty,

where, in the case of two massive bodies, the natural choice
for T, is the binary period.

This relation holds over a range of six orders of magni-
tude in T, and in a variety of dynamical problems. This
helps to explain the somewhat puzzling results of Sussman
and Wisdom (1988), who found a Lyapunov time for
Pluto of only 20 Myr in an integration of 800 Myr, and in
which Pluto did not make a close approach to another
planet. In this case, we take the period of Neptune (165
yr) as the unit of time, set 4=30, and predict a planet
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crossing in 7 X 10" yr. Also, Laskar (1989) found that the
Lyapunov time for the inner solar system was only 5
Myr, yet we believe the planets in the inner solar system
avoid close approaches for much longer times. In this case,
we take the year as the unit of time and set 4 =3; the time
for a planet crossing is then predicted to be 3 10'? years.
Even allowing for some ambiguity in the choice of the time
unit and therefore the value of 4, these predictions provide
a comfortable margin.

Finally, we ask if this relation applies to orbits in strong
resonances. We have made some initial explorations of this
problem. For nine orbits at the 3/2 resonance with Jupiter,
the relation held quite well, with an average value of
A=37. The relation also held at the 5/3, 8/5, and 7/4
resonances. On the other hand, we found no Jupiter cross-
ers at the 2/1 resonance in 10° Jovian periods. For the 3/1
resonance, we turn to Wisdom’s study (1983), where he
found a typical Lyapunov time of 270 Jovian periods for
orbits which had a spike in their eccentricity in about
20 000 Jovian periods. If our relation holds with the same
exponent, b=1.8, then A=1 at the 3/1 resonance. Thus,
the predictive power of the relation at strong resonances is
problematic and deserves further study.

We are pleased to acknowledge the perceptive and help-
ful comments of a referee.

REFERENCES

Benettin, G., Galgani, L., & Streleyn, J.-M. 1976, Phys. Rev. A 14, 2338

Bevington, P. R., 1969, Data Reduction and Error Analysis for the Phys-
ical Sciences (McGraw-Hill, New York)

Brouwer, D., & Van Woerkom, A. J. J. 1950, Astron. Papers Amer. Eph.
Naut. Almanac 13, 81

Crow, E. L, Davis, F. A., & Maxfield, M. W. 1949, Statistics Manual
(Dover, New York)

Franklin, F., Lecar, M., & Soper, P. 1989, Icarus 79, 223

Froeschle, C. & Scheidecker, J-P. 1973, Ap&SS 25, 373
Laskar, J. 1989, Nature 338, 237

Lecar, M., Franklin, F., & Soper, P. 1992, Icarus, 96, 234
Murison, M. A. 1989a, AJ 97, 1496

Murison, M. A. 1989b, AJ 98, 2346

Soper, P., Franklin, F., & Lecar, M. 1990, Icarus 87, 265
Sussman, G. J., & Wisdom, J. 1988, Sci. 241, 433
Wisdom, J. 1983, Icarus 56, 51



